
CTR_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

10.2 DRBGs Based on Block Ciphers

10.2.1 Discussion

A block cipher DRBG is based on a block cipher algorithm. The block cipher DRBGs
specified in this Standard have been designed to use any Approved block cipher
algorithm and may be used by applications requiring various levels of security, providing
that the appropriate block cipher algorithm is used and sufficient entropy is obtained for
the seed. The following are provided as DRBGs based on block cipher algorithms:

1. The CTR_DRBG (...) specified in Section 10.2.2.

2. The OFB_DRBG (...) specified in Section 10.2.3.

Table 3 specifies the security strengths and entropy and seed requirements that shall be
used for each Approved block cipher algorithm.

Table 3: Security Strengths, Entropy and Seed Length Requirements for Approved Block
Cipher Algorithms

Block Cipher
Algorithm

Security Strengths Required
Minimum
Entropy

Entropy Input
Lengths (in

bits)

Seed
Length
(in bits)

2 key TDEA 80 128 128-235 176

3 key TDEA 80, 112 128 128-235 232

AES-128 80, 112, 128 128 128-235 256

AES-192 80, 112, 128, 192 192 192-235 320

AES-256 80, 112, 128, 192,
256

256 256-235 384

10.2.2 CTR_DRBG

10.2.2.1 Discussion

CTR_DRBG (...) uses an Approved block cipher algorithm in the counter mode as
specified in [SP 800-38A]. The same block cipher algorithm and key length shall be used
for all block cipher operations. The block cipher algorithm and key size shall meet or
exceed the security requirements of the consuming application. Table 3 in Section 10.2.1
specifies the entropy and seed length requirements that shall be used for each block
cipher algorithm to meet the required security level.

Figure 12 depicts the CTR_DRBG (...). {Note : Figure to be inserted later.}

10.2.2.2 Interaction with CTR_DRBG

10.2.2.2.1 Instantiating CTR_DRBG

Prior to the first request for pseudorandom bits, the CTR_DRBG (...) shall be
instantiated using the following call:

CTR_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

(status, state_handle) = Instantiate_CTR_DRBG (requested_strength,
prediction_resistance_flag, personalization_string)

as described in Sections 9.5.1 and 10.2.2.3.4.

10.2.2.2.2 Reseeding CTR_DRBG

When a CTR_DRBG (...) instantiation requires reseeding, the DRBG shall be reseeded
using the following call:

status = Reseed_CTR_DRBG_Instantiation (state_handle, additional_input)

as described in Sections 9.6.2 and 10.2.2.3.5.

10.2.2.2.3 Generating Pseudorandom Bits Using CTR_DRBG

An application may request the generation of pseudorandom bits by CTR_DRBG (...)
using the following call:

(status, pseudorandom_bits) = CTR_DRBG (state_handle, requested_no_of_bits,
requested_strength, additional_input, prediction_resistance_request_flag)

as discussed in Sections 9.7.2 and 10.2.2.3.6.

10.2.2.2.4 Removing a CTR_DRBG Instantiation

An application may request the removal of an CTR_DRBG (...) instantiation using the
following call:

status = Uninstantiate_CTR_DRBG (state_handle)

as described in Sections 9.8 and 10.2.2.3.7.

10.2.2.2.5 Self Testing of the CTR_)DRBG Process

A CTR_DRBG (...) implementation is tested at power-up and on demand using the
following call:

status = Self_Test_CTR_DRBG ()

as described in Sections 9.9 and 10.2.2.3.8.

10.2.2.3 Specifications

10.2.2.3.1 General

The instantiation and reseeding of CTR_DRBG (...) consists of obtaining a seed with the
appropriate amount of entropy. The entropy input is used to derive a seed, which is then
used to derive elements of the initial state of the DRBG. The state consists of:

1. The value V, which is updated each time another outlen bits of output are
produced (where outlen is the number of output bits from the underlying block
cipher algorithm).

2. The Key, which is updated whenever a predetermined number of output blocks
are generated.

3. The key length (keylen) to be used by the block cipher algorithm.

CTR_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

4. The security strength of the DRBG instantiation.

5. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

6. A prediction_resistance_flag that indicates whether or not a prediction resistance
capability is required for the DRBG.

10.2.2.3.2 CTR_DRBG Variables

The variables used in the description of KHF_DRBG (...) are:

additional_input Optional additional input, which must be ≤ max_length bits in
length.

Block_Cipher (Key, V) The block cipher algorithm, where Key is the key to be used,
and V is the input block.

Block_Cipher_df (a, b) The block cipher derivation function specified in Section
9.5.4.3. {Note: The Block_Cipher_df will be specified later.}

blocklen The length of the block cipher algorithm’s output block.

entropy_input The bits containing entropy that are used to determine the
seed_material and generate a seed.

Find_state_space ()

A function that finds an unused state in the state space. See
Section 9.5.3.

Get_entropy (min_entropy, min_entropy, max_length)

A function that acquires a string of bits from an entropy input
source. See Section 9.5.2.

Invalid_state_handle An illegal value for the state_handle.

Key The key used to generate pseudorandom bits.

keylen The length of the key for the block cipher algorithm.

len (x) A function that returns the number of bits in input string x.

max_length The maximum length of a string for obtaining entropy. When
a derivation function is used, this value is implementation
dependent, but shall be ≤ 235 bits. When a derivation function
is not used, then max_length = seedlen.

max_no_of_states The maximum number of states and instantiations that an
implementation can handle.

max_request_length The maximum number of pseudorandom bits that may be
requested during a single request; this value is
implementation dependent, but shall be ≤ 235 bits for AES,
and ≤ 219 bits for TDEA.

CTR_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

min_entropy The minimum amount of entropy to be obtained from the
entropy_input source and provided in the seed.

Null The null (i.e., empty) string.

old_transformed_entropy_input

The transformed_entropy_input from the previous acquisition
of entropy_input (e.g., used during reseeding).

personalization_string A personalization string of no more than seedlen bits (see
Section 8.7.1).

prediction_resistance_flag

Indicates whether or not prediction resistance requests should
be handled; prediction_resistance_flag =
{Allow_prediction_resistance, No_prediction_resistance}.

prediction_resistance_request_flag

Indicates whether or not prediction resistance is required
during a request for pseudorandom bits;
prediction_resistance_request_flag =
{Provide_prediction_resistance, No_prediction_resistance}.

pseudorandom_bits The pseudorandom bits produced during a single call to the
KHF_DRBG (...) process.

requested_no_of_bits The number of pseudorandom bits to be generated.

requested_strength The security strength to be provided for the pseudorandom bits
to be obtained from the DRBG.

reseed_counter A counter that records the number of times pseudorandom bits
were requested since the DRBG instantiation was seeded or
reseeded.

reseed_interval The maximum number of requests for the generation of
pseudorandom bits before reseeding is required. The
maximum value shall be ≤ 232 for AES, and ≤ 216 for TDEA.

seedlen The length of the seed, where seedlen = blocklen + keylen.

seed_material The data used as the seed.

state (state_handle) An array of states for different DRBG instantiations. A state
is carried between DRBG calls. For the CTR_DRBG (...),
the state for an instantiation is defined as state (state_handle)
= {V, Key, keylen, strength, reseed_counter,
prediction_resistance_flag}. A particular element of the state
is specified as state(state_handle).element, e.g., state
(state_handle).V.

state_handle A pointer to the state space for the given instantiation.

CTR_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

status The status returned from a function call, where status =
“Success” or a failure message.

strength The security strength provided by the DRBG instantiation.

temp A temporary value.

V A value in the state that is updated whenever pseudorandom
bits are generated.

10.2.2.3.3 Internal Function: The Update Function

The Update (...) function updates the internal state of the CTR_DRBG (...) using
seed_material, which must be seedlen bits in length. The following or an equivalent
process shall be used as the Update (...) function.

Update (...):

Input: string (seed_material, keylen, Key, V).

Output: string (Key, V).

Process:

1. seedlen = blocklen + keylen.

2. temp = Null.

3. While (len (temp) < seedlen) do

3.1 V = (V + 1) mod 2blocklen.

3.2 output_block = Block_Cipher (Key, V).

3.3 temp = temp || ouput_block.

4. temp = Leftmost seedlen bits of temp.

5 temp = temp ⊕ seed_material.

6. Key = Leftmost keylen bits of temp.

7. V = Rightmost blocklen bits of temp.

8. Return (Key, V).

10.2.2.3.4 Instantiation of CTR_DRBG (...)

The following process or its equivalent shall be used to initially instantiate the CTR_DRBG
(...) process.

Instantiate_CTR_DRBG (...):

Input: integer (requested_strength, prediction_resistance_flag,
personalization_string).

Output: string status, integer state_handle.

Process:

1. Comment: If TDEA is used.

CTR_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

If (requested_strength > 112) then Return (“Invalid requested_strength”,
Invalid_state_handle).

Comment: If AES is used.

If (requested_strength > 256) then Return (“Invalid requested_strength”,
Invalid_state_handle).

2. If (prediction_resistance_flag = Allow_prediction_resistance) and prediction
resistance cannot be supported, then Return (“Cannot support prediction
resistance”, Invalid_state_handle).

Comment: Set the strength to one of
the five security strengths, and
determine the key length.

3. Comment: If TDEA is the block
cipher algorithm.

If (requested_strength ≤ 80), then (strength = 80; keylen = 112)

Else if (requested_strength ≤ 112), then (strength = 112; keylen = 168).

Comment: If AES is the block cipher
algorithm.

If (requested_strength ≤ 80), then (strength = 80; keylen = 128)

Else if (requested_strength ≤ 112), then (strength = 112; keylen = 128)

Else (requested_strength ≤ 128), then (strength = 128; keylen = 128)

Else (requested_strength ≤ 192), then (strength = 192; keylen =
192)

Else (strength = 256; keylen = 256).

4. seedlen = blocklen + keylen. Comment: determine the seed length.

5. temp = len (personalization_string).

6. If (temp > max_length), then Return (“personalization_string too long”,
Invalid_state_handle)

7. Comment: If a derivation function is
available (a source of full entropy
may or may not be available).

7.1 min_entropy = strength + 64.

7.2 (status, entropy_input) = Get_entropy (min_entropy, min_entropy,
max_length).

7.3 If (status ≠ “Success”), then Return (“Failure indication returned by the
entropy source” || status, Invalid_state_handle).

7.4 seed_material = entropy_input || personalization_string.

CTR_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

7.5 seed_material = Block_Cipher_df (seed_material, seedlen).

Comment: If a full entropy source is
known to be available and a
derivation function is not to be used.

7.1 (status, entropy_input) = Get_entropy (seedlen, seedlen, seedlen).

7.2 If (status ≠ “Success”), then Return (“Failure indication returned by the
entropy source” || status, Invalid_state_handle).

Comment: Pad with zeros if the
personalization string is too short.

7.3 If (temp < seedlen), then personalization_string = personalization_string
|| 0seedlen - temp.

7.4 seed_material = entropy_input ⊕ personalization_string.

Comment: Find space in the state
table.

8. (status, state_handle) = Find_state_space ().

9. If (status ≠ “Success”), then Return (“No available state space” || status,
Invalid_state_pointer).

10. Key = 0. Comment: keylen bits.

11. V = 0. Comment: blocklen bits.

12. (Key, V) = Update (seed_material, keylen, Key, V).

13. reseed_counter = 0.

14. state (state_handle) = {V, Key, keylen, strength, reseed_counter,
prediction_resistance_flag}.

15. Return (“Success”, state_handle).

Steps 1 and 3 must be implemented to handle the algorithm that is available.

The choice of code at step 7 must be selected based on whether the DRBG will be
instantiated with a full-entropy source and whether a derivation function will be used.

If no personalization_string will ever be provided, then the personalization_string input
parameter and steps 5 and 6 be omitted. If a derivation function is available, then step 7.4
may be omitted, and step 7.5 becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen)”.

If full entropy is known to be available and a derivation function is not available, then
steps 7.3 and 7.4 are omitted, and step 7.1 becomes:

(status, seed_material) = Get_entropy (seedlen, seedlen, seedlen)..

CTR_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

If an implementation does not need the prediction_resistance_flag as a calling parameter
(i.e., the CTR_DRBG (....) routine in Section 10.2.2.3.6 either always or never acquires
new entropy in step 9), then the prediction_resistance_flag in the calling parameters and
in the state (see step 14) may be omitted, as well as omitting step 2.

10.2.2.3.5 Reseeding a CTR_DRBG (...) Process

The following or an equivalent process shall be used to explicitly reseed the
CTR_DRBG (...) process.

Reseed_CTR_DRBG_Instantiation (...):

Input: integer (state_handle, additional_input).

Output: string status.

Process:

1. If ((state_handle > max_no_of_states) or (state(state_handle) = {Null, Null, 0,
0, 0, 0}), then Return (“State not available for the indicated state_handle”).

Comment: Get the appropriate state
values.

2. V = state(state_handle).V, Key = state(state_handle).Key, keylen =
state(state_handle).keylen, strength = state(state_handle).strength,
prediction_resistance_flag = state(state_handle).prediction_resistance_flag..

3. seedlen = blocklen + keylen.

4. temp = len (additional_input).

5. If (temp > max_length), then Return (“additional_input too long”).

6. Comment: If a derivation function is
available (a source of full entropy
may or may not be available.

6.1 min_entropy = strength + 64.

6.2 (status, entropy_input) = Get_entropy (min_entropy, min_entropy,
max_length).

6.3 If (status ≠ “Success”), then Return (“Failure indication returned by the
entropy source” || status, Invalid_state_handle).

6.4 seed_material = entropy_input || additional_input.

6.5 seed_material = Block_Cipher_df (seed_material, seedlen).

Comment: If a full entropy source is
known to be available and a
derivation function is not to be used.

6.1 (status, entropy_input) = Get_entropy (seedlen, seedlen, seedlen).

6.2 If (status ≠ “Success”), then Return (“Failure indication returned by the
entropy source” || status).

CTR_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

Comment: Pad with zeros if the
additional_input_string is too short.

6.3 If (temp < seedlen), then additional_input = additional_input || 0seedlen -

temp.

6.4 seed_material = entropy_input ⊕ additional_input.

7. (Key, V) = Update (seed_material, keylen, Key, V).

8. reseed_counter = 0.

9. state(state_handle) = {V, Key, keylen, strength, reseed_counter,
prediction_resistance_flag }.

10. Return (“Success”).

The choice of code at step 6 must be selected based on whether the DRBG will be
instantiated with a full-entropy source and whether a derivation function will be used.

If an implementation does not handle additional_input, then the additional_input
parameter of the input may be omitted as well as steps 4 and 5. If a derivation function is
available, then step 6.4 may be omitted, and step 6.5 may be changed to:

seed_material = Block_Cipher_df (entropy_input, seedlen).

If full entropy is known to be available and a derivation function is not available, then
steps 6.3 and 6.4 may be omitted, and step 6.1 may be changed to:

(status, seed_material) = Get_entropy (seedlen, seedlen, seedlen).

10.2.2.3.6 Generating Pseudorandom Bits Using CTR_DRBG (...)

The following process or an equivalent shall be used to generate pseudorandom bits.

CTR_DRBG(...):

Input: integer (state_handle, requested_no_of_bits, requested_strength,
additional_input, prediction_resistance_request_flag).

Output: string (status, pseudorandom_bits).

Process:

1. If ((state_handle > max_no_of_states) or (state (state_handle) = {Null, Null,
0, 0, 0, 0}), then Return (“State not available for the indicated state_handle”,
Null).

Comment: Get the appropriate state
values.

2. V = state(state_handle).V, Key = state(state_handle).Key, keylen =
state(state_handle).keylen, strength = state(state_handle).strength,
reseed_counter = state(state_handle).reseed_counter,
prediction_resistance_flag = state(state_handle).prediction_resistance_flag.

3. If (requested_strength > strength), then Return (“Invalid
requested_strength”, Null).

CTR_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

4. seedlen = blocklen + keylen.

5. temp = len (additional_input).

6. If (temp > max_length), then Return (“additional_input too long”, Null).

7. If (requested_no_of_bits > max_request_length), then Return (“Too many
bits requested”, Null).

8. If ((prediction_resistance_request_flag = Provide_prediction_resistance) and
(prediction_resistance_flag = No_prediction_resistance)), then Return
(“Prediction resistance capability not instantiated”, Null).

9. If ((reseed_counter ≥ reseed_interval) OR
(prediction_resistance_request_flag = Provide_prediction_resistance)), then

Comment: If reseeding is not
available.

Return (“DRBG can no longer be used. Please re- instantiate or reseed.”,
Null).

Comment: If reseeding is readily
available.

9.1 status = Reseed_CTR_DRBG (state_handle, additional_input).

9.2 If (status ≠ “Success”), then Return (status, Null).

9.3 V = state(state_handle).V, Key = state(state_handle).Key,
reseed_counter = state(state_handle).reseed_counter.

9.4 Go to step 11.

Comment: When reseeding or
prediction resistance is not required.

10. If (additional_input ≠ Null), then

Comment: If the length of the
additional input is > seedlen, derive
seedlen bits.

10.1 If (temp > seedlen), then additional_input = Block_Cipher_df
(additional_input, seedlen).

Comment: If the length of the
additional_input is < seedlen, pad
with zeros to seedlen bits.

10.2 If (temp < seedlen), then additional_input = additional_input || 0seedlen -

temp.

10.3 (Key, V) = Update (additional_input, keylen, Key, V).

CTR_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

11. temp = Null.

12. While (len (temp) < requested_no_of_bits) do:

12.1 V = (V + 1) mod 2blocklen.

12.2 output_block = Block_Cipher (Key, V).

12.3 temp = temp || ouput_block.

13. pseudorandom_bits = Leftmost (requested_no_of_bits) of temp.

Comment: Update for backtracking
resistance.

14. zeros = 0seedlen. Comment: Produce a string of
seedlen zeros.

15. (Key, V) = Update (zeros, keylen, Key, V)

16. reseed_counter = reseed_counter + 1.

17. state(state_handle) = {V, Keykeylen, strength, reseed_counter,
prediction_resistance_flag,).

18. Return (“Success”, pseudorandom_bits).

If an implementation will never provide additional_input, then the additional_input input
parameter, steps 5, 6 and 10 can be omitted, and a Null string replaces the
additional_input in step 9.1. If max_length ≤ seedlen, then step 10.1 may be omitted (i.e.,
the block cipher derivation function is not required).

If an implementation does not need the prediction_resistance_flag, then the
prediction_resistance_flag may be omitted as an input parameter, and step 8 may be
omitted.

If an implementation does not have a reseeding capability, then steps 9.1-9.3 may be
omitted, and step 9 becomes:

If (reseed_counter ≥ reseed_interval), then Return (“DRBG can no longer be used.
Please re- instantiate or reseed.”, Null).

10.2.2.3.7 Removing a CTR_DRBG (...) Instantiation

The following or an equivalent process shall be used to remove a CTR_DRBG (...)
instantiation:

Uninstantiate_CTR_DRBG (...):

Input: integer state_handle.

Output: string status.

Process:

1. If (state_handle > max_no_of_states), then Return (“Invalid state_handle”).

2. state(state_handle) = {Null, Null, 0,0, 0, 0}.

3. Return (“Success”).

CTR_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

10.2.2.3.8 Self Testing of the CTR_DRBG (...)

[Tp be determined]

OFB_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

10.2.3 OFB_DRBG (...)

10.2.3.1 Discussion

OFB_DRBG (...) uses an Approved block cipher algorithm in the output feedback mode
as specified in [SP 800-38A]. The same block cipher algorithm and key length shall be
used for all block cipher operations. The block cipher algorithm and key size shall meet
or exceed the security requirements of the consuming application. Table 3 in Section
10.2.1 specifies the entropy and seed length requirements that shall be used for each
block cipher algorithm to meet the required security level.

Figure 13 depicts the CTR_DRBG (...). {Note : To be inserted later.}

10.2.3.2 Interaction with OFB_DRBG (...)

10.2.3.2.1 Instantiating OFB_DRBG (...)

Prior to the first request for pseudorandom bits, the OFB_DRBG (...) shall be
instantiated using the following call:

(status, state_handle) = Instantiate_OFB_DRBG (requested_strength,
prediction_resistance_flag, personalization_string)

as described in Sections 9.5.1 and 10.2.3.3.4.

10.2.3.2.2 Reseeding an OFB_DRBG (...) Instantiation

When an OFB_DRBG (...) instantiation requires reseeding, the DRBG shall be reseeded
using the following call:

status = Reseed_OFB_DRBG_Instantiation (state_handle, additional_input)

as described in Sections 9.6.2 and 10.2.3.3.5.

10.2.3.2.3 Generating Pseudorandom Bits Using OFB_DRBG (...)

An application may request the generation of pseudorandom bits by OFB_DRBG (...)
using the following call:

(status, pseudorandom_bits) = OFB_DRBG (state_handle, requested_no_of_bits,
requested_strength, additional_input, prediction_resistance_request_flag)

as discussed in Sections 9.7.2 and 10.2.3.3.6.

10.2.3.2.4 Removing an OFB_DRBG (...) Instantiation

An application may request the removal of an OFB_DRBG (...) instantiation using the
following call:

status = Uninstantiate_OFB_DRBG (state_handle)

as described in Sections 9.8 and 10.2.3.3.7.

10.2.3.2.5 Self Testing of the OFB_DRBG (...) Process

A OFB_DRBG (...) implementation is tested at power-up and on demand using the
following call:

OFB_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

status = Self_Test_OFB_DRBG ()

as described in Sections 9.9 and 10.2.3.3.8.

10.2.3.3 Specifications

10.2.3.3.1 General

The instantiation and reseeding of OFB_DRBG (...) consists of obtaining a seed with the
appropriate amount of entropy. The entropy input is used to derive a seed, which is then
used to derive elements of the initial state of the DRBG. The state consists of:

1. The value V, which is updated each time another outlen bits of output are
produced (where outlen is the number of output bits from the underlying block
cipher algorithm).

2. The Key, which is updated whenever a predetermined number of output blocks
are generated.

3. The key length (keylen) to be used by the block cipher algorithm.

4. The security strength of the DRBG instantiation.

5. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

6. A prediction_resistance_flag that indicates whether or not a prediction resistance
capability is required for the DRBG.

10.2.3.3.2 OFB_DRBG (...) Variables

The variables for OFB_DRBG (...) are the same as those used for the CTR_DRBG (...)
specified in Section 10.2.2.3.2.

10.2.3.3.3 Internal Function: The Update Function

The Update (...) function updates the internal state of the CTR_DRBG (...) using
seed_material, which must be seedlen bits in length. The following or an equivalent
process shall be used as the Update (...) function.

Update (...):

Input: string (seed_material, keylen, Key, V).

Output: string (Key, V).

Process:

1. seedlen = blocklen + keylen.

2. temp = Null.

3. While (len (temp) < seedlen) do

3.1 V = Block_Cipher (Key, V).

3.2 temp = temp || V.

4. temp = Leftmost seedlen bits of temp.

OFB_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

5 temp = temp ⊕ seed_material.

6. Key = Leftmost keylen bits of temp.

7. V = Rightmost blocklen bits of temp.

8. Return (Key, V).

Note that the only difference between the update function for OFB_DRBG (...) and
CTR_DRBG (..) is in step 3.

10.2.3.3.4 Instantiation of OFB_DRBG (...)

This process is the same as the instantiation process for CTR_DRBG (...) in Section
10.2.2.3.4.

10.2.3.3.5 Reseeding an OFB_DRBG (...) Instantiation

This process is the same as the reseeding process for CTR_DRBG (...) in Section
10.2.2.3.5.

10.2.3.3.6 Generating Pseudorandom Bits Using OFB_DRBG (...)

This process is the same as the generation process for CTR_DRBG (...) in Section
10.2.2.3.6, except that step 11 shall be as follows :

9. While (len (temp) < requested_no_of_bits) do:

11.1 V = Block_Cipher (Key, V).

11.2 temp = temp || V.

10.2.3.3.7 Removing an OFB_DRBG (...) Instantiation

This process is the same as the uninstantiation process for CTR_DRBG (...) in Section
10.2.2.3.7.

10.2.3.3.8 Self Testing of the OFB_DRBG (...)

This is the same as the self testing of CTR_DRBG (...) in Section 10.2.2.3.8.

OFB_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

Appendix E : DRBG Selection

E.3 DRBGs Based on Block Ciphers

E.3.1 The Two Constructions: CTR and OFB

This standard describes two classes of DRBGs based on block ciphers: One class uses the
block cipher in OFB-mode, the other class uses the CTR-mode. There are no practical
security differences between these two DRBGs; CTR mode guarantees that short cycles
cannot occur in a single output request, while OFB-mode guarantees that short cycles will
have an extremely low probability. OFB-mode makes slightly less demanding
assumptions on the block cipher, but the security of both DRBGs relates in a very simple
and clean way to the security of the block cipher in its intended applications. This is a
fundamental difference between these DRBGs and the DRBGs based on hash functions,
where the DRBG's security is ultimately based on pseudorandomness properties that don't
form a normal part of the requirements for hash functions. An attack on any of the hash-
based DRBGs does not necessarily represent a weakness in the hash function; however,
for these block cipher-based constructions, a weakness in the DRBG is directly related to
a weakness in the block cipher.

Specifically, suppose that there is an algorithm for distinguishing the outputs of either
DRBG from random with some advantage. If that algorithm exists, it can be used to
build a new algorithm for distinguishing the block cipher from a random permutation,
with the same time and memory requirements and advantage.

Because there is no practical security difference between the two classes of block-cipher
based DRBGs, the choice between the two constructions is entirely a matter of
implementation convenience and performance. An implementation that uses a block
cipher in OFB, CBC, or full-block CFB mode can easily be used to implement the OFB-
based DRBG construction; an implementation that already supports counter mode can
reuse that hardware or software to implement the counter-mode DRBG. In terms of
performance, the CTR-mode construction is more amenable to pipelining and parallelism,
while the OFB-mode construction seems to require slightly less supporting hardware.

E.3.2 Choosing a Block Cipher

While security is not an issue in choosing between the two DRBG constructions, the
choice of the block cipher algorithm to be used is more of an issue. At present, only
TDEA and AES are approved block cipher algorithms. However, two block cipher
DRBG constructions will work for any block cipher with a block length ≥ 64 and key
length ≥ 112. TDEA's 64-bit block imposes some fundamental limits on the security of
these constructions, though these limits don't appear to lead to practical security issues
for most applications.

OFB_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

Consider a sequence of the maximum permitted number of generate requests, each
producing the maximum number of DRBG outputs from each generate call. Assuming
that the block cipher behaves like a pseudorandom permutation family, the probability of
distinguishing the full sequence of output bytes is:

1. For AES-128, there are a maximum of 228 blocks (i.e., 232 bytes = 235 bits)
generated per Generate (...) request, 232 total Generate (...) requests allowed, 2128
possible keys, and 2128 possible starting blocks.

a. The probability of an internal collision in a single Generate (...) request is
never higher than about 2-96, and so the probability of an internal collision in
any given Generate (...) request is never higher than about 2-64. (This applies
only to the OFB-mode, but a collision of this kind would result in a very easy
distinguisher.)

b. The expected probability of an internal collision in a sequence of 228 random
128-bit blocks is about 2-74. Thus, the probability of seeing an internal
collision in any of the Generate (...) sequences is about 2-42. This probability
is low enough that it does not provide an efficient way to distinguish between
DRBG outputs and ideal random outputs.

c. The probability of a key colliding between any two Generate (...) requests in
the sequence of 232 such requests is never larger than about 2-65. This is also
negligible. (For AES-192 and AES-256, this probability is even smaller.)

2. For Two-key TDEA with 112-bit keys and 64-bit blocks, things are a bit different:
There are 216 Generate (...) requests allowed, and a maximum of 213 blocks (i.e.,
216 bytes = 219 bits) generated per Generate (...) request. (Note that this breaks the
more general model in this document of assuming 264 innocent operations.) In
this case:

a. The probability of an internal collision is never higher than about 2-51 per
Generate (...) request, and with only 216 such requests allowed, the
probability of ever seeing such an internal collision in a sequence of requests
is never more than about 2-35. (Note that if more requests are allowed, as
required by the 264 bound assumed elsewhere in the document, there would be
an unacceptably high probability of this event happening at least once.)

b. The expected probability of an internal collision in a sequence of 213 64-bit
blocks is about 2-38. Thus, the probability of ever seeing an internal collision
in 216 output sequences is still an acceptably low 2-22. (Note that if more
Generate (...) requests are allowed, there would be an unacceptably high
probability of this happening, leading to an efficient distinguisher between
this DRBG's outputs and ideal random outputs.

c. The probability of a key colliding between any two of the 216 Generate (...)
requests is about 2-56, which is negligible. (Note that the probability would be
much higher if the number of allowed Generate (...) requests is not limited.)

To summarize: block size matters much more than the choice of DRBG construction that
is used. The limits on the numbers of Generate (...) requests and the number of output
bits per request require frequent reseeding of the DRBG. Furthermore, the limits

OFB_DRBG (...) ANSI X9.82, Part 3 – Draft – July 2004

guarantee that even with reseeding, an attacker that is given a really long sequence of
DRBG outputs from several reseedings cannot distinguish that output sequence from
random reliably. The block cipher DRBGs used with TDEA are suitable for low-
throughput applications, but not for applications requiring really large numbers of DRBG
outputs. For concreteness, if an application is going to require more than 232 output
bytes (235 bits) in its lifetime, that application should not use a block cipher DRBG
with TDEA or any other 64-bit block cipher.

E.3.3 E.3.3 Conditioned Entropy Sources and the Derivation Function

The block cipher DRBGs are defined to be used in one of two ways for initializing the
DRBG state during instantiation and reseeding: Either with freeform input strings
containing some specified amount of entropy, or with full-entropy strings of precisely
specified lengths The freeform strings will require the use of a derivation function,
whereas the use of full-entropy strings will not. The block cipher derivation function has
not been finalized yet, but is expected to use the block cipher algorithm to compute a
several parallel CBC-MACs on the input string under a fixed key and using different IVs,
to use the result to produce a key and starting block, and run the block cipher in OFB-
mode to generate outputs from the derivation function. An implementation must choose
whether to provide conditioned entropy bits, or to support the derivation function. This is
a high- level system design decision; it affects the kinds of entropy sources that may be
used, the gate count or code size of the implementation, and the interface that
applications will have to the DRBG. On one extreme, a very low gate count design may
use hardware entropy sources that are easily conditioned, such as a bank of ring
oscillators that are exclusive-ored together, rather than to support a lot of complicated
processing on input strings. On the other extreme, a general-purpose DRBG
implementation may need the ability to process freeform input strings as personalization
strings and additional inputs; in this case, the block cipher derivation function must be
implemented.

